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There is a need to calculate loss rates when trapped Van Allen radiation encounters 

inert orbiting material such as planetary rings and satellites. An analytic expression for 

the probability of a hit in a bounce encounter is available for all cases where the absorber 

is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The 

hit probability is a function of the particle's pitch angle, the size of the absorber, and 

the distance between flux tube and absorber, when distances are scaled to the gyroradius 

of a particle moving perpendicular to the magnetic field. Using this expression, we have 

computed hit probabilities in drift encounters for all regimes of particle energies and 

absorber sizes. This technique generalizes our approach to sweeping lifetimes, and is 

particularly suitable for attacking the inverse problem, where one is given a sweeping 

signature and wants to deduce the properties of the absorber(s). 
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1. INTRODUCTION 

Planetary rings and satellites that are immersed in trapped radiation belts leave sig- 

natures in the surrounding radiation by decelerating and absorbing the energetic particles 

that  strike their surfaces. Aljoen (19421 realized long ago that this process would take 

place, and he gave it great importance in his theory of cosmogeny; but it wits not until the 

space age, with in situ measurements at the outer planets, that these sweeping signatures 

drew widespread attention and became exploited as diagnostic tools for both the trapped 

radiation and orbiting material. Although some applications have depended only on the 

existence of sweeping signatures (e.g.: discovering new orbiting bodies [Acuna and Ness, 

1976; Fillius, 1976; Van Allen, 1982; Cheng et al., 19831 and inferring the symmetry 

properties of the Uranian magnetic field (Stone e t  al., 1986]), others require quantitative 

computations of sweeping rates. These include quantifying the amount of orbiting ma- 

terial present in a ring [ Van Allen 19871, and calculating trapped particle diffusion rates 

[Hood, 1983; Thomsen et al., 1977; Paonessa and Cheng, 19861. 

Simple considerations are sometimes adequate, but the quantitative computation of 

sweeping rates can be tricky, because the the geometry is complex-and includes such 

complications as “leapfrogging” and “corkscrewing.” Also, in general, one may have to 

range over orbiting material from submicron dust to nearly planet-sized masses, and thus 

consider intermediates and extremes of the relevant parameters. Previous papers have 

dealt with individual cases and used approximations applicable to restricted situations. 

Some of their results have been laborious and/or inaccurate. This paper is an attempt 

to fill the need for a method readily applicable to all cases. 

Paonessa and Cheng [1985] make an excellent statement of the problem, and present 

many of the elements of a general theory. Our point of departure from their approach 

is t h i t  we have an analytic expression for the probability of absorption in a bounce 

encounter (See Section 3). This renders orbit tracing unnecessary, saving computation 

time, and identifies the parameter space in which we can carry out a general computation 

for the probability of absorption in a drift encounter (See Section 4). This general result 
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is highly suitable to use as a tool when dealing with the inverse problem; i.e.: given an 

absorption signature, deduce the properties of the unknown absorber. Also, we are now 

able to carry out the numerical computations to a higher degree of accuracy without 

being limited by the fineness of the grid and thus the computation time required. Before 

we present these results, Section 2 looks at  several cases that can be worked out simply. 

This allows us to introduce the problem, and provides reference points to which we can 

compare the results to follow. 

i 

2. STRAIGHTFORWARD CASES OF TRAPPED RADIATION ABSORPTION 

We assume that the orbiting material is electrically neutral, nonmagnetic, and too 

nonconductive to interact with the planetary magnetic field. Thus our problem is strictly 

geometric, with ample complexity contributed by the charged particle motion and the 

range of target sizes to be encompassed. There is usually enough randomness to justify a 

probabilistic approach, in which the loss rate, *, is proportional to the trapped particle 

density CP divided by some lifetime 7: 

There are straightforward arguments to obtain 7 in several cases. 

A Sparse Ring of Small Objects 

Picture an annulus of width ARp and circumference 27rRp containing a collection of 

small objects of radius R much smaller than t h e  particle gyroradius R,. Let the sum of 

the objects’ cross-sectional areas be A. If the objects are sparse, they do not overlap, and 
thePopacity measured perpendicular to the ring plane is given simply by v = 2rR, ,AR, , ,  A 

with q << 1. Every time a trapped particle passes through the annulus, its chance 

of hitting one of the objects is ZrRpARpcosa ,  A where a is the angle between the particle‘s 

trajectory and a normal to the ring plane. 
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When viewed in a magnetic coordinate system, the ring annulus might not be circular 

or centered on the planet, and the magnetic equator might not coincide with the ririg 

plane. Consequently the distribution of ring material, dA/dL, may be unevenly spread 

over a range W of the magnetic coordinate L. Particles that are within W may or may not 

be within ARp,  depending upon their longitudes, as illustrated in Figure 2 of the paper 

by Mogro-Camper0 and Fillius (19761. Rather than model the uneven distribution of 

dA/dL, we will use the average value, A/ W. Additionally, we must consider that at  some 

longitudes some particles will mirror at a lower magnetic latitude than the ring plane. 

Those particles that do not cross the ring plane in their bounce motion obviously escape 

absorption, at  least for that fraction of their longitudinal motion. These approximations 

are best if the magnetic field is centered and aligned with the planetary spin axis, as 

at Saturn, and they are reasonable for small tilt and offset, as at Jupiter. Uranus will 

require special consideration, [ Paonessa and Cheng, 19871. 

We will let the particle lifetime be a longitudinal average, because for a sparse ring 

the trapped particles execute many longitudinal drift cycles during their residence time in 

W. With these simplifications the average time for a trapped particle to hit an absorber 

is 

Tb ~ T R ~ W C O S C U  
2QL A 

72 = - 

': 

where Tb is the particle's bounce period, c r ~ .  is the fraction of bounces that cross the ring 

plane, as used by Thornsen e t  af [1977], and the reason for our choice of subscript on ~2 

will become apparent later. The lifetime for eliminating the particle from the sampled 

population is 

where Y is the average number of hits required. If a single hit is sufficient to annihilate 

the particle, then v = 1. 
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Fine Dust 

Trapped particles in the energy ranges detected by the Pioneer and Voyager experi- 

ments will survive many hits on submicron-sized dust. To estimate u when it is greater 

than one, consider a particle of given initial energy E. The critical number of hits v(E) is 

R t h  ( E )  v ( E )  = -. 
nd (2.4) 

where 2 is the average thickness of ring material traversed per hit, n is the density of the 

ring material in g r n ~ r n - ~  , and Rth(E) is the particle's range above threshold in units of 

gmcrn-'. That is, &(E) is the amount of material the particle can traverse before its 

energy is reduced below the detector threshold, E t h :  

where (-dE/ndx) is the energy loss rate of the particle in matter. For spherical objects 

of uniform radius R, r R 2 2  = $ r R 3 .  Thus 

Rt h fy=- 
4/3nR 

For a 1 /2  MeV proton, Rth amounts to very little material, only about 10 microns of ice; 

for a 100 MeV proton, Rth is several centimeters; and for a 100 MeV electron, tens of 

centimeters. , 

-A Large Object 

For a sufficiently large satellite, absorption is inevitable whenever the drifting flux 

tube of the particle's gyromotion is intercepted by the satellite. This case is called 

"snpwplow" absorption. The loss rate is still probabilistic, because the radial width, W ,  

of the region where the particle might encounter the satellite is generally much greater 

than the effective diameter, de,,, of the satellite, given by the satellite diameter plus 

two particle gyroradii, de,, = 2(R+R,). If their relative drift motions bring particle 

and satellite to  the same meridian with a relative period Trel, then each time they pass 
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each other, the probability of absorption is given by aL(d,,f /W) , and so the absorption 

lifetime is 

Comparison of Three Cases 

As shown above, different absorber sizes lead to different formulas for the absorption 

lifetime. We collect the formulas here, to demonstrate their explicit dependence on R, a, 

and E. 

( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

The size of the absorber enters to the third power in equation ( 2 . 8 ~ ) ~  the second power 

in (2.8b), and the first power in (2.8a). There is a ready physical explanation for this 

progression. An energetic particle passes right through fine dust, and the entire volume 

of the absorbing material acts to slow down the particle. If an object is bigger, a particle 

penetrates its skin only to a depth of R t h ,  being eliminated in a single hit, and it is the 

surface area that matters. Finally, if the object is yet bigger, its leading edge performs 

all the absorption, and it acts like a snowplow. 

The transition from snowplow absorption described by equations (2.7) and (2.8a) to 

ring-like absorption described by equations (2.2) and (2.8b) takes place when the presence 

of the object in the particle’s drift path is no longer sufficient to guarantee absorption. The 

particle might miss by one of two processes. In one process, often called “leapfrogging,” 

the particle’s drift velocity is high enough to carry it past the satellite during one half 
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of the bounce period. Similarly, in the other process the particle’s bounce velocity is 

high enough to carry it past the satellite during a fraction of the gyrocircle that clears 

the satellite. This process is called “corkscrewing.” The above treatment does not cover 

these possibilities, and in the past specialized numerical and Monte Carlo techniques 

have been used to deal with such complexities, [Bell and Armstrong, 1986; Paonessa and 

Cheng, 19851. In section 3 we will present an analytic formula which covers corkscrewing, 

and in section 4 we will present a numerical calculation which covers leapfrogging and 

gives a result that can be applied to any case. 

3. THE PROBABILITY OF A HIT IN A BOUNCE ENCOUNTER 

We need to distinguish between a bounce encounter and a drift encounter. This 

distinction is based on the usual decomposition of trapped particle motion into bounce 

and drift motion, and is valid because the drift period is much longer than the bounce 

period in all cases that concern us. One bounce encounter takes place as the charged 

particle moves from its last mirror point in one hemisphere, past the orbiting object, 

toward its next mirror point in the opposite hemisphere. Geometrically we represent the 

orbiting object as a sphere, and the particle’s trajectory in the vicinity of the encounter as 

a spiral drawn on the surface of a cylindrical tube of magnetic flux. The bounce encounter 

produces a hit if the spiral intersects the sphere, and a miss if it doesn’t. The problem is 

well-defined as soon as we specify the phase of the spiral and the distance between the 

cylinder and the sphere. However, we don’t want to concern ourselves with any given 

phase; what we really want to know is what percentage of bounce encounters produce 

hits when the gyrophases are distributed uniformly. This is equivalent to assuming that 

the phase is random upon each bounce encounter and the particle motion is gyrotropic. 

This geometry problem is solvable analytically as shown in Appendix A. We will use 

the letter p for the probability of a hit and q for the probability of a miss. The result is 

given below: 

I 
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p =  1 - q  = & / 7 r  5 1 

where R is the radius of the sphere, S is the distance between the axis of the cylinder 

and the center of the sphere, R, is the radius of the cylinder (i.e., the gyroradius), and a 

is the pitch angle, measured between the particle's velocity vector and a line parallel to 

the axis of the cylinder. Note that the distances R and S are scaled to the gyroradius, 

Rg.  The condition, p< 1, limits the probability to a maximum of 1, and merely reflects 

the fact that  it is irrelevant if the spiral intersects the sphere more than once. 

Equation (3.1) is easier to use if the distances are scaled to the gyroradius, a, that 

the same particle would have if its pitch angle were 90". That is, u =-:R,/sincu. Then, 

P = + C / T  L 1. 

cos4, = - - { COSZ* - Jcos2a(l - p2) + u* 
p sina 

where Q = S/a, and p = R/a. 

This function can be visualized by making contour plots of the hit probability in Q - p 

space for a given value of a. Seven cases are shown in Figure l(b-h). The cartoon in 

Figure l(a) illustrates the relationship between object and flux tube in the four domains 

of D - p space. The divisions between domains occur, a t  the top, where Q = p + sin a; 
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at the lower left, where u = sin a - p; and at the lower right, where u = p - sin a. As 

depicted in the cartoon, at  the upper left, the flux tube falls wide of the object, and the 

hit probability is zero. At the lower left, the flux tube circumscribes the object, and the 

hit probability is again zero. At the lower right, the flux tube is impaled in the object, 

and particles of all gyrophases hit the sphere. In the center, particles of some gyrophases 

hit the object and some don’t, because of the corkscrew effect, and the phase-averaged 

hit probability is intermediate between zero and one. Equation 3.1 gives the same results 

as the numerically-computed Figure 2 of Paorzessa and Cheng [1985]; however, we now 

have a more comprehensive view of the function. 

4. THE PROBABILITY OF A HIT IN A DRIFT ENCOUNTER 

A drift encounter occurs once for every time the flux tube carrying the trapped 

particle passes the orbiting object in the direction of the orbital or drift motion. If the 

flux tube carrying the particle drifts around the planet with some period Td, and the 

object has a Keplerian period Tk, then drift encounters occur with the period, Trel, given 

by7 -: 

where negative periods correspond to retrograde motion. Three different drift encounters 

are depicted in Figures 2(a-c), using three representations for each case. In the first 

representation, at  the left, the cross-sections of the absorber and of the flux tube carrying 

the particle are both drawn to scale. In the second representation, in the middle, the 

particle is represented only by the field line through its gyrocenter, and the absorber is 

drawn with an effective radius given by RfR,.  The third representation, at the right, 

shows what the encounter trajectory looks like in the u - p space of Figure 1. Here the 

position of the particle can be visualized as moving downward on the approach, until 

it reaches a minimum value of u at the point of closest approach, and then returning 

upwards along the same path as it recedes. Although the flux tube carrying the particle 
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can be thought of as moving continuously past the object, bounce encounters occur 

only at  discrete points along the path of the flux tube; for example: where dots are 

shown on the drift paths. Half a bounce period elapses between bounce encounters 

(half, because the bounce encounters alternate in direction). The half-bounce step size 

is obviously an important parameter, and we will call it H, or x when normalized to the 

distance scale used above, so that x = H/a. The three cases in Figure 2(a-c) span an 

order of magnitude in the relative dimensions of absorber and gyrocircle, and require 

different approximations from Section 2 above. Nevertheless, all bounce encounters can 

be calculated with equations (3.1) and (3.2), and the drift encounters are straightforward 

in u - p space. 

No More Than One Bounce Per Drift Encounter 

Note that when H > 2(R + Rg), (or x > 2 ( p  + sina)), the particle might pass the 

object without any bounce encounters at hazardous range (“leapfrogging”), and there can 

be at most one hazardous bounce during a drift encounter. In this case it is worthwhile 

to compute 3, the hit probability for bounce encounters averaged over the effective cross 

section of the object. ? 

p(u, p ,  a) 27ra d u p” 
7r(p + sina)* (4.3) 

Figures 3(a and b) show fF, and $=  1 - fF, computed from (4.3) and (3.2), plotted as a 

function of p for a number of pitch angles, cy. 

If the drift encounters are suitably random, this is enough to arrive at the sweeping 

lifetime. We only need to count the number of hits per annihilation, and to remember 

that the probability given by equation (4.3) applies to bounce encounters that fall wilhin 

the,circle of radius p+sina, whereas the sweeping lifetime applies to all particles within 

the annulus 2nR,W. Thus the hit probability is diluted by the ratio of these two areas: 

m 
l b  

f =  R,W/(a(p  + sin  CY))^. 
P (4-4) 
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Equation (4.4) is valid for all corkscrew and leapfrog misses, but it does not allow for 

drift encounters with multiple bounces. 

This result for Tshould agree with the results for ring absorption that we obtained in 

Section 2 under the additional approximations that we used then, namely when R << R, 

(or p << sin a). Comparing Equation (4.4) with (2.2-3) and (2.8b-c), we find 

, when p << sin CY. 2 P2 
'= sin2cu cos a (4.5) 

This equation describes Figure 3 in the given limit. 

More Than One Bounce Per Drift Encounter 

When H < 2(R + R,) (or x < 2 ( p  + sin a)), there may be more than one bounce 

in the course of a drift encounter. With the assumption that the gyrophase is random 

upon each bounce encounter, the probability that a particle will survive one bounce is 

independent of all of the other bounces. Then the probability that a particle will survive 

the first i bounce encounters is given by the probability that it will survive up to the i*h 

bounce, multiplied by the probability that it will survive the ith bounce encounter. By 

iteration, the probability, Q, that a particle survives the entire drift encounter is given 

by the product of the miss probabilities for all bounces in the drift encounter, and, since 

the probability, P, of a hit during the drift encounter is 1 - Q, 

Q=nqi 
i 

p = 1 - n(l i - p i )  

*These products must be evaluated numerically. This computational task has been 

performed for individual cases by Paonessa and Cheng, [1985]. They marched each parti- 

cle, bounce step by bounce step, past the absorbing object, evaluating pi with each step, 

and accumulating the products as in equation (4.6). To get the average hit probability 
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for all drift encounters, they lined up N particles in a two-dimensional grid, of width 

2(R+R,) and depth H, marched them through, and averaged lhe drift probabilities, 
- 

Without an analytical method for evaluating pi, however, this computational effort re- 

quired tracing out a large number of spiral trajectories (e.g.: 360) on each bounce, and 

testing each for hits. Furthermore, it was necessary to do this separately for each named 

object and particle type. Equations (3.1) and (3.2) shorten this computational task and, 

best of all, make it possible to obtain a general result in terms of p ,  x, and a. Let us 

show some partial results which illustrate the sweeping processes. 

Absorption Profiles 

Rairden [ 19801 calculated absorption profiles for the satellites of Saturn and a number 

of specific particle types. We are now in a position to generate a catalog of such profiles 

labeled in general coordinates. Figure 4 illustrates some of the range and variety that 

can occur. The 25 panels were calculated with five values for p (0.1, 0.316, 1.0, 3.16, and 

10) and the same five values for x, arranged so that rho increases from left to right, and 

x increases from bottom to top. Each panel shows the probability of survival in a drift 

encounter for 10 values of pitch angle from 0 to 90" degrees. Although any profile has a 

width of 2(p + sin a ) ,  we show only half because of symmetry. 

To picture how these profiles were calciilated, divide the distance from centerline to 

limb (0 to p + sina) into some number of intervals sufficient to resolve the level of detail, 

and envision this many columns of particles drifting toward the object. The columns 

must have a depth of H to cover the full range of bounce phases; but it helps to be 

clever in allocating the particles along this depth. We forecast which intervals from 0 

to  H have zero hit probability, and allocate the particles uniformly over the rest of the 

0 
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interval, multiplying the average hit probability for these particles by the fraction of 

the full interval that they cover. This allocation is another geometry problem, and it is 

explained in Appendix B. 

There are systematic differences in these profiles with x, p,  and CY. At the right, 

where R, << R, differences in pitch angle affect only the fringes of the profiles, and 

the reader will recognize this as the snowplow domain. By contrast, note the prominent 

differences in profile width where R, > R ( p  < l) ,  and recall that the width of each 

profile depends upon pitch angle through the gyroradius R, = a sin a. Leapfrogging is 

important where x > p ,  from the main diagonal to the upper left corner of the matrix, 

and is recognizable in the increased survivability as one scans from the bottom to the top 

of each column. A characteristic feature, when p < 1, is that absorption is higher near 

the edges of the profiles and lower near the center. The survival probability is improved 

near the center because the particles' gyromotion can carry them all the way around the 

absorber without hitting it, like a quoit around a peg. This effect was pointed out in our 

discussion of bounce encounters, in the lower left-hand corner of Figure 1. The reader 

will notice several profiles, for p << 1 and a = 90, that have more than one minimum. 

These peculiar features arise from conjunctions of the half bounce step size, H, with the 

distance across the hazard. Appendix B demonstrates this phenomenon. It appears only 

for pitch angles near go", where the corkscrew effect is inoperative. At smaller pitch 

angles, corkscrew escapes smooth out the profiles and eliminate these complications. 

The strong pitch angle dependence for low values of rho is also a manifestation of the 

corkscrew effect. 

Average Hit Probability 

To obtain the average hit probability, P ,  for all particles in the path of an absorber, 

it o n 6  remains to average over the width, p + sina, of the absorption profiles. The result 

is a function of x, p and C Y ,  and may be exhibited as contour plots of P in x - p space. We 

have computed P ,  using the method explained above, for a number of pitch angles. Figure 

5 illustrates some of the phenomenology this function exhibits in x - p space. Figure 
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5(a) contrasts the two limits, a = 0" and go", and Figure 5(b) shows what happens for 

some intermediate values of the pitch angle. For p >> 1 the contours for different pitch 

angles are the same, as they should be, since here the gyroradius is negligible compared 

to the size of the absorber. The obvious difference in Figure 5(a) for p < 1 is caused by 

the difference in the radius of the flux tube covered by the particle's trajectory. For cy 

of 0" and go", any object that touches the surface of the flux tube produces a hit, and 

the flux tube with the larger surface produces the larger hit probability. However, when 

the pitch angle deviates from the limit at go", corkscrew escapes become a possibility, 

and the hit probability falls off with decreasing pitch angle, as seen in Figure 5(b). The 

threshold for corkscrew escapes is roughly where the absorber fits inside the pitch of one 

spiral turn, [Rairden, 19801, or R < 7rR,cot a. In normalized coordinates, this criterion 

becomes p < T C O S  cy, which gives the positions where there are knees in the contours for 

intermediate pitch angles. At values of p to the left of these knees, the absorption prob- 

ability falls off because of the corkscrew effect. The 25 dots in Figure 5(c) correspond to 

the 25 panels of Figure 4, and one can examine features in more depth by cross-comparing 

Figures 4 and 5. 

5. T H E  AVERAGE ABSORPTION LIFETIME 

The absorption probability, P ,  computed as in Section 4, and exhibited in Figure 5 ,  

pertains to each drift encounter. Then the average particle lifetime, T ,  is, 

using the terminology developed in Sections 2 and 3. This is a general equation which 

covers all cases, unlike equations 2.8(a- c). 

To compare 5.1 to equations 2.8(a-c), note that 5.1 is a transparent extension of 2.8(a) 

for v = 1 and P = 1. Equation 2.8(a) applies in the snowplow domain, which is the lower 

right hand sector of Figure 5. For ringlike sweeping described by equations 2.8(b) and (c),  



recall that the application of these equations is restricted to p << sina, x > 2(p+sina),  

and p < T C O S  a. Then for 5.1 to be equivalent to 2.8(b) in this domain, 

p =  7rP2 
Z ( p  + sin cy)x cos a‘ 

To get this result, we used the relationship H/(27rrRP) = Tb/(2Trel). Equation 5.2 describes 

the upper left-hand section of Figure 5. This is easy to verify in the following limits, 

, f o r  p << sina. p =  T P 2  
2xsin Q! cosa 

- T P  P = - -, f o r  sina << p. 
2 X  

(5.34 

(5.36) 

The comparison with 2.8(b) applies also to 2.8(c), with the additional consideration that 

v > 1 for penetrable dust. 

We see from the above that equation 5.1, using P calculated from equation 3.2 and 

the methods in Section 4, gives the same results as the straightforward cases presented 

in Section 2. However, we now have a solution for all of the non-straightforward cases, 

as well as a general formalism for understanding and interrelating the different regimes 

of particle sweeping from dust to planetoids. 

6.  DISCUSSION 

Approximate Solutions 

In Sections 2 and 4 we discussed approximat.ions which are nsahle in certain cases. 

Having established x, p,  and cy as the relevant parameters for determining sweeping 

prob’abilities, it is helpful to locate the domains of these approximations in x - p space. 

If there is no more than one bounce in a drift encounter, the average bounce prob- 

ability, j?, suffices, where the relationship between F i n  equation (4.3) and P in (4.7) is 

the ratio of the areas over which bounce encounters have been averaged: 
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The criterion for this situation is x > 2 ( p  + sin a), and is shown in Figure 5(c) for alpha 

= 0", 30", and 90". Equations (4.3) and (4.4) are usable above this limit. 

Snowplow absorption occurs when the absorber is much larger than either the gyro- 

radius (R >> Rg) or the half-bounce step size (R >> H ) ,  and there are no corkscrew 

escapes (R > rRg  cot a). These criteria are satisfied by the condition p > r + 5x, which is 

also drawn in Figure 5(c), cutting off the lower right-hand corner. Below this line, P a 1, 

and as already noted in discussing Figure 4, this is the domain of snowplow absorption. 

The straightforward case of ringlike absorption applies when R, >> R, corkscrew 

escapes are possible (R < rR, cot CY) ,  and one can treat each bounce as independent 

statistically. This is approximately valid, for a = 30" and go", when p < 0.1 and p < 0.2, 
respectively, and the vertical lines define this domain on the left-hand edge of Figure 

5(c). 

Thus Figure 5(c) shows the ranges of the parameters x , p ,  and, CY where certain ap- 

proximations simplify the task of calculating sweeping probabilities. The area of greatest 

difficulty is where the length scales are about equal; that is, near the diagonal where 

p = x, and also where p and x sz 1. There are many cases for which simplification is not 

possible. 

Applications I 

It is not our purpose in the present paper to investigate specific cases, as they are too 

extensive, differently motivated, and should be considered, each, individually. However, 

we want to demonstrate that our method is ~ort~hwhile ,  and provides a useful attack 

to sweeping computations. Therefore we will demonstrate how several cases studied in 

previbus publications compare with our results. Figure 5(c) shows where Io (at Jupiter), 

and Dione and a putative shepherd for the G-ring (at Saturn) fall in x - p space for 

protons and electrons of energies typically measured by spacecraft. 

The positions on the two electron loci where x approaches zero correspond to the well- 
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known resonance where the particles drift at the satellite’s keppler velocity. Although P 
is unity for these cases, the absorption lifetime, 7, goes to infinity as expected because it 

is proportional to T,,l/P (equation 5.1). 

Absorption of protons at  Dione was examined intensively by Paonessa and Cheng 

[ 19851, computing everything numerically. These authors corrected the results of Thom- 

sen et al [1977], and Schardt and McDonald 119831, who used approximations. Figure 

5(c) confirms the need for numerical methods here. 

Van Allen [ 19871 used an approximation to calculate absorption probabilities at  the 

Saturnian G-ring, and concluded that the maximum possible radius for a single absorber 

at  this position is 2.4 km. Such an object is shown, clearly in the ringlike approximation 

zone, in Figure 5(c). His approximation, equation (18) in his paper, is the same as our 

equation (2.2) if we use ZR, for W, and CYL = 1. 

These values of x and p were computed under the approximation that a particle’s 

perpendicular gyroradius, a, has the same value everywhere on the absorber’s orbital 

path. This approximation is excellent at Saturn, where the planetary magnetic field has 

near-perfect axial symmetry. At Jupiter, where the equivalent dipole has a small tilt and 

offset, it may vary by 15%, which would cause the loci in Figure 5 (c j  to be spread out 

slightly. However, at Uranus, the gyroradius may vary by a factor of two from one drift 

encounter to another, and a precise computation of the absorption lifetime will require 

further averaging to take this variation into account. Also, at Uranus, the half-bounce- 

step-size, H, will not be uniform for encounters a t  high magnetic latitude. For these 

reasons, Uranus requires a more complex computation for drift encounter absorption 

probabilities. However, the bounce encounter formulas given in this paper will shorten 

the process considerably. 
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FIGURE CAPTIONS 

Fig. 1 The probability, p, of a hit in a bounce encounter, calculated from equation (3.2), 

for 7 values of the pitch angle, a. The contours correspond to values of p = 0.001, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.999. See text, Section 3. 

I 

’ .  
, 

Fig. 2 Drift encounters (a-c) in three different representations (left to right). 

Fig. 3 Bounce probabilities averaged over the effective disk of the absorber. These 

averages are useful if there can be no more than one bounce encounter in a drift encounter 

(i.e.: if H > 2(R+Rg)) .  Fig 3(a): The probability of a hit in a bounce encounter, averaged 

over the effective disk of the absorber. Fig 3(b): The probability of a miss in a bounce 

encounter, averaged over the effective disk of the absorber. 

Fig. 4 Twenty-five families of absorption profiles for as many locations in x - p space. 

Each family includes profiles for 10 values of pitch angle from 0 through 90”. The ordinate 

in each panel is the probability of survival in a drift encounter (from 0 to l), and the 

abscissa is the distance of the drift path from the center of the object (from 0 to p+sin a). 

Fig. 5(a) Contours of equal values for the average hit probability inla drift encounter, 

for two pitch angles, 0” and 90”. 

Fig. 5(b) Contours of equal values for the average hit probability in a drift encounter, 

for four pitch angles, 30°, 60”, 75”, and 82.5”. The four pitch angles appear in the same 

order in each set. 

Fig. 5(c) Loci in x - p space for specific particles at the named absorbers: “A” represents 

protons at Dione; “B”, protons at Io; “C” , electrons at Dione; “D” , electrons at  Io; and, 

“E”, protons at  a putative 2.4 km radius satellite at  the position of Saturn’s C-ring. 

Particle energies are marked at 0.01, 0.1, 1.0, lo., loo., and 1000. MeV. Three pitch 

angles are shown. The 25 dots correspond to the positions in x - p space of the 25 

absorption profiles shown in Figure 4. The dashed and dotted lines delineate the portions 

of x - p space where certain approximations are useful. 

9 

Fig. A1 Geometry of a bounce encounter. 
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Fig. A2 The surface of the flux tube that carries the spiraling particle. The phase is 

shown from 0 to  720" (two revolutions) in order to provide more continuity in the curves, 

and the z and p - 4 directions are not to the same scale. The barberpole stripes describe 

the helical trajectories of particles, and the impact curve is the intersection of a spherical 

absorber with the flux tube. 

Fig. B1 Representation of a drift encounter when p = 0.1 and x = 1.0. 
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APPENDIX A : DERIVATION OF THE PROBABILITY 

OF A IIIT IN A BOUNCE ENCOUNTER 

The absorbing object is a sphere of radius R, and the magnetic flux tube is a cylinder 

of radius R, whose axis is a distance S from the center of the sphere (See Figure A l ) .  

The intersection of cylinder and sphere is easily solved. We will call it the impact curve 

since it is the locus where hits occur. 

Tw- OS 

( A l l  2 2 t = R - Rf - S2 + 2R,S  COS^. 

re easily disposed of. No hits are possible unless R, - R < S < R, + R,  

which assures that the intersection exists. Also, if 0 < S < R - R,, the sphere engulfs 

the cylinder and all particles hit. Otherwise, we must describe the barberpole- stripe 

trajectory of a spiraling particle, which is, 

Figure A2 shows what the surface of the cylinder looks like in two dimensions. Barberpole 

stripe a produces a hit; stripe c is a miss; and stripes b and d, which just osculate the 

impact curve, describe the boundaries between hits and misses. Our problem will be 

solved by a formula for these boundaries. Osculation occurs where the slope of the 

impact curve equals that of the barberpole stripe. Differentiating A1 and A2 and equat- 

ing derivatives, the osculation locus is, 

The osculation points, ( z 3 ,  $s), occur at the intersections of the osculation locus with the 

impact curve, or the solution of A3 with Al .  

22 -- 
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4 1 cos4, = - - - 
S tan2a 

- 

We can then use A4 with A2 to solve for the phase limits for hits and misses. 

23 -- 



APPENDIX B: GEOMETRICAL CONSIDERATIONS FOR THE 

ALLOCATION OF PARTICLES ALONG A DRIFT COLUMN 

There are cases where the result would become grid limited if the particles were 

distributed uniformly from 0 to H. For instance, if x >> p,  most of the candidate 

particles would leapfrog the object, missing altogether, and the hit probability would be 

based upon a reduced number of cases. Further, if p << 1, the absorber might even fall 

between consecutive grid points and be hit by none of the particles. In general, if the hit 

probability is lox, it will require a t  least 10" grid points to evaluate it accurately. As 

our method is so general, it can encounter cases where these limitations apply. Although 

one can increase the number of grid points, brute force, it is more economical to forecast 

which intervals from 0 to  H have zero hit probability, and allocate the candidate particles 

uniformly over the rest of the interval. One then calculates the average hit probability for 

these particles, and scales the result by the fraction of the full interval that they cover. 

Figure A3 illustrates the geometry when p = 0.1 and x = 0.316. (The absorption 

profiles for this case are one of the families in Figure 4.) The drift encounter is drawn 

here as in the second representation of Figure 2; that is, the particle is represented by 

the field line through its gyrocenter, and the absorber, whose effective area is shaded 

by the diagonals that run from lower left to upper right, occupies an annulus with radii 

given by R f R,. The particles to  be followed through their drift encounters occupy 

the area of depth H and width 2(R, + R )  immediately above the annulus. The diagonal 

shading in this area that runs from upper left to lower right highlights the sections for 

which bounce hit probabilities must be computed. Particles in the unshaded areas have 

zero hit probabilities on all of the three bounces that it takes to drift past the absorber. 

The method of forecasting which particles are at  risk is clear as soon as one realizes 

that,,for any column a t  a given distance, b, from the centerline, there are no more than 

two intervals (inbound and outbound) where the drift path intersects the annulus. Each 

interval is projected, modulo H, from the annulus back to the initial column. The intervals 

can then be combined, if necessary, to eliminate overlap and accommodate contiguity. 

It is interesting to note, in Figure A3, that the size of the risk interval has several 



maxima and minima as a function of b; e.g.: there is a local maximum at b l ,  a local 

minimum a t  b2, another local maximum at b3, and a local miiiirnum on the center line. 

These local extrema correspond to the peculiar variations in the 90" absorption profile 

from Figure 4, and now the reason for this effect is obvious. Since corkscrew misses are 

impossible for particles with a 90" pitch angle, any particle in the shaded area scores a 

hit; thus the hit probability is proportional to the shaded fraction of the drift column. 

This effect disappears after the pitch angle deviates far enough from 90" to allow the 

absorber to fit between consecutive arcs of the particle's spiral. Then the corkscrew 

effect diminishes the hit probability, and the peculiar shape of the profile is washed out. 

t 
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